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Structure of Expanded Fluid Metals 
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0-3550 Marburg, FRG 

(Received 2 I December 1988) 

A survey is given of neutron diffraction investigations of the static structure factor S(Q) of liquid rubidium 
and cesium expanded by heating towards conditions close to  their critical points. The data are used to 
derive the characteristic changes of the microscopic structure-such as the distance and number of nearest 
neighbours-as a function of density. After a brief discussion of recent measurements of the isothermal 
density derivative of S ( Q )  of expanded liquid cesium, which is related to the triplet correlation function, we 
describe the theoretical attempts which have been undertaken so far to extract information from the 
structure data about the density dependent changes of the effective interaction potential as the metal- 
nonmetal transition is approached. 

KEY WORDS: Liquid Metals, Neutron Scattering, High Temperature, High Pressure, Structure 

1 INTRODUCTION 

Over the last years, considerable effort has been put into investigating the structural, 
thermodynamic, electrical and magnetic properties of liquid alkali metals expanded 
by heating towards their liquid-vapour critical points'-". Much of this effort has 
focused on rubidium and cesium whose critical points occur at  temperatures and 
pressures sufficiently low that the physical properties of these metals can be studied in 
the critical region with accurate static experimental methods (critical data of Cs: 
T,  = 1924 K, P, = 92.5 bar, d, = 0.38 g ~ m - ~ ;  of Rb: T, = 2017 K, P, = 124.5 bar, 
d, = 0.29 gcm-3 6 ) .  Experimental measurements such as those of the liquid-vapour 
coexistence curve6, the critical data6, the electrical conductivity', the static magnetic 
susceptibility3 and the Knight shift4 have indicated, that liquid rubidium and cesium 
undergo a metal-nonmetal transistion near their liquid-vapour critical point. 

The metal-nonmetal transition resembles that proposed by Mott in his pioneering 
studies of the metal-nonmetal transition in expanded monovalent crystals". Mott 
and Hubbard have shown that short range electron-electron interactions can lead to 
electron localization at low densities in systems with one electron per atom such as 
liquid alkali metals' ' 3 l 2 .  Subsequent theoretical work13 showed that the electron gas 
on the metallic side of the metal-nonmetal transition should be highly correlated, 
having a low instantaneous fraction of doubly occupied states, which leads to an 
increase in the effective mass and, consequently, to an enhancement of the para- 
magnetic susceptibility. The latter prediction has been confirmed by static magnetic 
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2 R.  WINTER A N D  F. HENSEL 

susceptibility and nuclear magnetic resonance experiments on expanded liquid 
c e ~ i u m ~ . ~ .  

The occurrence of the metal-nonmetal transition in expanded alkali metals implies 
that the interatomic forces must exhibit drastic changes as the density of the fluid is 
decreased, especially when the metal-nonmetal transition is approached. Useful 
information about these changes can be obtained from studies of a combination of 
equation of state data, electrical properties and structural data. For that reason, a 
series of neutron scattering experiments have been performed to determine the 
structure of liquid rubidium and cesium at conditions covering the whole liquid range 
from the melting point up to the critical point5,14, where the metallic properties 
disappear. In addition the isothermal density dependence of the structure factor S(Q)  
of expanded cesium has been measured over a wide range of temperatures, ranging 
from 340 K up to 1670 K31. Such measurements are of actual interest because recent 
theoretical work 16-18 demonstrates that the isothermal density derivative of S(Qj 
which is related to the three-body  correlation^'^ will play an essential role in any 
effort to extract quantitative information on the effective pair potential from experi- 
mental diffraction data. 

In the following we present recent experimental results together with theoretical 
attempts which have been undertaken so far to extract information from them about 
the state dependence of the effective interaction potential. 

2 EXPERIMENTAL RESULTS AND DISCUSSION 

As an example, Figure la  shows a selection of measured structure factors S(Q)  of 
expanded liquid cesium for different temperatures and densities near the liquid- 
vapour coexistence curve, covering the whole liquid range from the melting point up 
to the critical point’. For Q I 0.28 kl, the structure factors are extrapolated to 
S(0) = nk,TX,, with the number density n and isothermal compressibility zT taken 
from the most accurate PVT-data6. The neutron-diffraction experiments have been 
performed using the two axis diffractometer D4B at the high-flux reactor of the 
Institute Laue-Langevin in Grenoble. The high-pressure high-temperature autoclave 
necessary for performing these experiments and the data evaluation procedure for 
obtaining S(Q)  from the raw data are described in detail in Ref. 19. 

Figure 1 b displays the corresponding Fourier-transform of the S(Q)-data, the pair 
correlation function g(R).  With decreasing density or increasing temperature the 
following changes in S(Q) or g ( R )  of the liquid metal are apparent: 

The intensities of the first peaks of S(Q) and g(R j  are strongly reduced and 
broadened, whereas the peak positions Q ,  and R ,  shift only slightly towards lower Q- 
or higher R- values, respectively. Compared with a simple nonmetallic liquid such as 
argon, the oscillations of S(Q)  for liquid cesium are drastically damped with increasing 
temperature. Only a broad first maximum is seen in S(Q)  of cesium near the critical 
point, whereas in the case of liquid argon three well defined maxima and minima are 
observable near the critical point”. This difference in behaviour can be attributed to 
differences in the repulsive part of the effective interaction potential @ ( R )  for liquid 
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Figure 1 
coexistence curve. (b) The pair correlation function g(R)  of expanded liquid cesium. 

(a) The structure factor S(Q) of expanded liquid cesium at conditions near the liquid-vapour 
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4 R. WINTER AND F. HENSEL 

alkali metals and argon' '. The repulsive part is much softer in metals than in argon. 
This characteristic of @ ( R )  for the alkali metals is also qualitatively indicated by the 
change of y(R) with increasing temperature (see Figure 1 b). With increasing tempera- 
ture, the first ascent of g(R) becomes less steep and starts at  a smaller R-value, i.e., a 
smaller hard-core radius. In the case of liquid argon, the position of the first peak and 
the steepness of the first ascent of g(R)  remain almost unchanged along the saturated 
vapour-pressue curve, only the height of the maximum decreases". 

The average nearest-neighbour distance R ,  is given by the position of the first peak 
in y(R), whereas the average coordination number N ,  can be obtained from the area 
under the first peak. The absolute value of N ,  depends sensitively on the method 
employed to define and integrate the first neighbour peak22. Depending on the model, 
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Figure2 Average number N ,  and average distance R ,  of nearest neighbours for liquid cesium as a 
function of density (inset: method for calculating N , ) .  
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EXPANDED FLUID METALS 5 

the absolute value of N ,  can vary within N ,  k 2. We used the method of symmetrical 
main maximum (see inset of Figure 2). 

The analysis of the data displayed in Figure l b  shows (Figure 2 )  that for cesium N ,  
tends to decrease linearly with density from 9 close to the melting point to roughly 3 in 
the critical point region, whereas the position R ,  of the nearest neighbours remains 
essentially constant. These data clearly demonstrate that the density reduction by 
expanding liquid cesium develops mainly from a decrease in the average number of 
nearest neighbours rather than from an expansion to larger interatomic distances. A 
similar behaviour has been observed for expanded liquid rubidium and a r g ~ n ' . ' ~ * ~ ~  

Figure 3 displays the height of the first maximum of S(Q),  S(Q1), of a few liquid 
metals as a function of temperature, both quantities are reduced to their values at the 
melting point5-'4.23-24. Obviously, no reduced correlation between the alkali metals 
and the polyvalent metals is observed, indicating that reduced correlations are 
unlikely to hold for the liquid metals as a group. However, the alkali metals can be 
reduced in corresponding regions of the phase diagram, which indicates that the 
thermodynamic state dependence of the effective interaction potentials in metals may 
be very similar within groupings of metals like the group of the alkali metals. This 
indication is also supported by the existence of a law of corresponding states for the 
equation of state of the alkali metals rubidium and 

As is well known, electrical transport measurements are directly correlated with 
the structure of the liquid metal, i.e. the structure factor S(Q)". In the nearly-free 
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Figure3 The height S ( Q , )  of the first peak of S ( Q )  for a few liquid metals as a function of temperature 
(both values are reduced to their value at the melting point). 
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6 R. WINTER AND F. HENSEL 

electron (NFE) approach, the electrical conductivity is described by the Faber- 
Ziman-formula' 

0- = ?!!% j 2kFS(Q) i  v(Q)I2Q3 dQ 
4A3e2kg 

where V ( Q )  denotes the screened ion pseudopotential, k ,  the wavenumber of the 
electrons at the Fermi surface and R is the atomic volume. For calculating V(Q) we 
used the Ashcroft empty core potential26, combined with a density dependent 
dielectric function E(Q) which takes into account exchange and correlation 
 effect^^.^'-^^ . F igure 4 shows the results of these calculations compared with the 
experimental values of the dc-electric conductivity for expanded liquid cesium3'. The 
agreement is satisfactory for higher densities. The applied formalism starts to fail 
already at a density of about 1.4 g ~ m - ~ ,  i.e., at  about 3-4 times the critical density d,.  
The region where the NFE-model breaks down is very close to the region where the 
onset of the magnetic susceptibility enhancement has been indicating that 
electron-electron correlation effects become important. In addition, the electron mean 
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Measured and calculated (Faber-Ziman NFE-model) electrical conductivity of liquid cesium as 
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EXPANDED FLUID METALS 1 

free path becomes small in this region and approaches a value which is comparable to 
the mean interatomic separation of the metal atoms. This necessarily leads to the 
breakdown of the weak scattering Faber-Ziman approximation and marks the onset 
of the strong thermodynamic state dependence of the electronic structure as the metal- 
nonmetal transition is approached'. 

When the alkali metals are expanded at conditions near the coexistence curve, 
density and temperature are changed simultaneously. In order to understand the 
influence of each of these thermodynamic variables on the structural properties upon 
expansion in more detail, it is necessary to study separately the isobaric temperature 
and isothermic pressure dependence of S(Q).  The effect upon S ( Q )  of increasing the 
temperature or pressure at constant pressure and temperature, respectively, is 
illustrated for one example in Figure 5. It can be seen that the temperature increase 
broadens the main maximum of S ( Q )  and shifts its main peak position Q ,  to a smaller 
value, whereas the compression results in a slight shift of Q, to a higher value, while its 
peak height rises only by a small amount. This example clearly shows that the 
temperature and pressure effects on S(Q1) and Q1 and therefore also on the distance of 
nearest neighbours, R,, have opposite signs and compensate each other to some 
extent during the expansion of the metal. 

The isothermal pressure derivative of the structure factor S ( Q )  is of particular 
interest, because it is related to three-body correlations and plays an important role in 
extracting quantitative information on the effective pair potential from experimental 
diffraction data15-18. 

Figure 6 shows the experimental results for the pressure dependence of the structure 
factor S(Q) of liquid cesium at different subcritical temperatures between 340 and 
1700 K31. It can be seen that in the high density metallic region of cesium at 343 K the 
dominant pressure effect of S ( Q )  (or equivalently on the pair correlation function 
g(R)) is a slight shift of the first peak position, reflecting a corresponding slight change 
in the mean interatomic distance R,, while otherwise little change is seen. In a 
theoretical paper of Bratkovsky et a1.32, the pressure-dependence of S ( Q )  of alkali 
metals has been studied using a model potential of the Animalu-Heine type in 
combination with the Percus-Yevick equation. Their calculated S(Q,  P )  shows an 
increase in peak position and height of the main peak under compression. Their 
results are in good qualitative agreement with the observations for cesium and also 
with similar data obtained for liquid potassium33 and liquid rubidium34. 

However, this behaviour of liquid alkali metals is quite unlike that of normal non- 
conducting liquids like the rare gases, for which pressure change mainly leads to a 
change in the number of nearest neighbours2', but it is in good agreement with the 
predictions of the uniform fluid model (UFM) which has been successfully used by 
Egelstaff and his colleagues to explain the density dependence of S ( Q )  of liquid 
rubidium near the melting point34v35. The UFM can be characterized in the following 
way. At high densities, the alkali metal effective interaction potential @ ( R )  is assumed 
to have a soft core repulsion for small distances R and a weak attractive minimum at 
intermediate R. At larger distances, the potential oscillates according to @ ( R )  = 
cos(2kFR)/R3. Here, kF = (3nn2)'I3 represents the Fermi wave vector and n the 
number density of the conduction electrons. The effect of density change is then 
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Figure 5 Temperature and pressure effect on the region of the main peak of the structure factor S(Q) of 
liquid cesium. 
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Figure 6 Structure factors S(Q)  of expanded liquid cesium as a function of temperature and pressure. The 
dashed lines at low Q are extrapolations to the compressibility limit. 
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Figure 6 Structure factors S(Q)  of expanded liquid cesium as a function of temperature and pressure. The 
dashed lines at low Q are extrapolations to the compressibility limit. 
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10 R. WINTER AND F. HENSEL 

simply to scale all distances with the density dependence of k,.  This behaviour leads to 
the following expression for the density derivative of S ( Q ) 3 5 :  

Egelstaff et al. verified experimentally that liquid rubidium near the melting point 
satisfies Eq. 2. The prediction of the UFM (Eq. 2) is compared with the experimental 
data of cesium in Figure 7. As can be seen, the UFM fits the experimental data for 
cesium at T = 343 K (mean density d = 1.87 gcm-’)), i.e., close to the melting point, 
also reasonably well. However, i t  is obvious from Figure 7 that its validity breaks 
down with increasing temperature. It has been shown that the UFM does not agree 
with data for the density dependence of S ( Q )  of liquid argon, neon or a Lennard-Jones 
model f l ~ i d ~ ~ - ~ ~ ,  because the number of nearest neighbours changes with density in 
these cases, whereas the distance of the nearest neighbours remains virtually constant. 
The data for liquid cesium at T =  973 K (d = 1 . 4 6 g ~ m - ~ )  and 
T = 1173 K (d  = 1.34 gcm-3) shown in Figure 7 do indeed show features which are 
similar to those observed for the Lennard-Jones fluids. 

The contrast between the behaviour of the liquid metals and the Lennard-Jones 
fluids has been analyzed in a number of theoretical  paper^'^-^', which use a selection 
of model potentials (hard-sphere, Yukawa, Lennard-Jones and the Price potential), 
each of which is solvable within the mean-spherical approximation or the Percus- 
Yevick approximation. The results of these papers can be interpreted that two 
characteristic features of the effective interaction potential of metals are mainly 
responsible for an experimentally observed UFM-behaviour: the softness of the 
repulsive core and the presence of Friedel oscillations in the tail of the potential. 

The failure of the UFM for liquid cesium at conditions T 2 973 K can thus be 
explained by the disappearance of these features which are typical for a nearly-free 
electron metal2’. At slightly higher temperatures the breakdown of the nearly-free 
electron (NFE) approach of the Faber-Ziman model for the electrical conductivity is 
observed (see Figure 4). 

As already noted, the electron mean free path approaches a value which becomes 
comparable with that for the mean interatomic distance at these temperatures and 
densities. A small electron mean free path, however, corresponds to a blurring of the 
Fermi surface, which has not been included in the calculation of the N F E - m ~ d e l ~ l . ~ ~ .  
It has been shown for a point that such a blurring damps out the oscillatory 
behaviour of the ion-ion interaction potential and makes at the same time the 
repulsive part harsher. Both effects can thus lead to a breakdown of the UFM. 

A further interesting feature of Figures 6 and 7 is the shape of S ( Q )  and its density 
derivative in the low Q region for the temperatures T = 1373 K and T =  1673 K, 
which correspond to the reduced temperatures ATIT, of 0.29 and 0.13, respectively. At 
such large distances from the critical point, insulating fluids like argon do not show 
such a marked enhancement in S ( Q )  for small Q. One explanation of this effect, which 
has been discussed by Kahl and Hafner44, is that it reflects the strong density 
dependence of the attractive interaction when the screening is reduced as the metal- 
nonmetal transition is approached. 
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Figure 7 The density (full line) and wavenumber (dashed line) derivative of the structure factor S(Q) of 
liquid cesium (see Eq. 2) at different temperatures along the liquid-vapour coexistence curve. 
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12 R.  WINTER AND F. HENSEL 

3 THEORETICAL CALCULATIONS O F  THE STRUCTURE OF 
EXPANDED LIQUID METALS 

Whilst a considerable amount of theoretical work has been devoted to the structural 
properties of liquid alkali metals at high densities, i.e. close to their melting 
po;nt2i.4s-47 , the structure of expanded liquid metals is less well explored. In 
particular, all theoretical attempts employed up to now to explain the structure of 
expanded metals have used nearly-free electron theory in describing the interatomic 
forces in connection with computer simulation techniques or liquid state theory. 

and the Monte-Carlo 
method for his calculation of the structure factor of expanded liquid rubidium. 
Because of the poor agreement found between the calculation and experimental 
structural data available at that time29, Mountain claimed that the Price potential is 
too strongly repulsive and does not reliably incorporate the density dependence into 
the potential. On the other hand, the agreement with the more recent and more 
accurate data on expanded rubidium14 is better, except for the low Q-region at  the 
highest temperatures studied. 

A similar approach was used by Tanaka’l employing a molecular dynamics 
calculation based on a slightly different effective pair potential @ ( R ) ,  the optimized 
Heine-Abarenkov potential as proposed by Shaw”, using Singwi’ss3 formula for the 
dielectric screening function of the valence electrons. The calculations showed that the 
minimum of @ ( R )  becomes deeper with decreasing density, whereas the position of 
the minimum does not shift very much. Good agreement is found with the experimen- 
tal results for liquid rubidium’ at moderate temperatures and momentum transfers, 
but the low Q-region of S(Q) is also not adequately reproduced. 

Bratkovsky et dS4 calculated the structure factor of expanded liquid rubidium in 
the Percus-Yevick approximation, using a potential as proposed by Animalu and 
Heine’’.’6. They also found that under expansion of the liquid metal the repulsive 
core size decreases and the minimum depth of the effective interaction potential 
increases. They observe good agreement with the data of Franz ef al. for liquid 
rubidiumi4 (which cover the range from 350 K ( d  = 1.46 gcm-3) up to 2000 K 
( d  = 0.54 gcm-3) at conditions near the liquid-vapour coexistence curve) up to 
T I  0.7 K ,  i.e., up to a temperature of about 1400 K, corresponding to a density of 
about 0.97 gcm ~ ’. On further approaching the critical point, discrepancies at small 
Q-values become significant. One reason probably is that the Percus-Yevick approxi- 
mation fails to describe the behaviour of fluids in the critical region correctly, but the 
discrepancies might also arise from the use of the Animalu-Heine-potential, which 
might become inappropriate at the low densities. 

McLaughlin and Youngs7 have calculated the interatomic interaction potential of 
expanded rubidium employing the pseudopotential technique, based on a softened 
hard sphere reference system following the WCA methods8, the attractive tail has 
been incorporated in the mean density approximations9. They observed, as the 
density is reduced, that the attractive tail deepens, whereas the core stays approxi- 
mately constant. A t  the higher temperatures, the potentials become harder in the 
neighbourhood of the effective collision diameter. They also compared their results 

Mountain48 used Price’s density dependent 
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EXPANDED FLUID METALS 

with the most recent neutron scattering data of Franz et a l l 4  The experimentally 
observed S(Q)’s can be understood quite well within their model up to the highest 
temperatures, where the attractive tail of the potential becomes essential in describing 
the low Q behaviour of S(Q). 

Kahl and Hafner44 also performed a theoretical calculation of the structure factor 
of expanded liquid rubidium at conditions near the liquid-vapour coexistence. Their 
calculation is based on the optimized random-phase approximation and on an 
effective interatomic pair potential derived from pseudopotential perturbation 
theory47. The pair potential is split into a repulsive short-range interaction and an 
attractive long-range part following the WCA convention. The repulsive part consists 
of an effective hard-sphere interaction with corrections for the softness being 
performed by the blib function method4’. The long-range attractive interaction has 
been solved in the optimized random-phase approximation. The authors find the 
following. The oscillatory part of the interaction potential plays an important role in 
determining the medium Q-range structure of liquid rubidium. The importance of 
these Friedel-oscillations in determining the liquid structure has also been pointed out 
by Cummings and E g e l ~ t a f f ~ ~ . ~ ~ .  In course of the expansion of liquid rubidium, the 
nearest neighbour distance R ,  is essentially constant, in agreement with the 
e~per iment ’~ .  The strength of the interatomic potential increases strongly with 
decreasing density. Only for temperatures T I 1400 K (d = 0.97 g ~ m - ~  = 3 . 3 4  
good agreement between theory and experiment is found. For higher temperatures, 
the density dependence of the interaction potential is evidently underestimated within 
the applied model. In this region, the electronic mean-free path is of the order of 
magnitude of the interatomic spacings, so that the applied linear screening and weak- 
scattering formalism break down. This breakdown has been observed for expanded 
liquid cesium also at a density of about 3 to 4 times d,’. The screening functions would 
have to be corrected for short range electronic mean-free paths in the calculation. The 
true interatomic potentials are probably more attractive at the higher temperatures 
than the ones given by the linear-response calculation used by the model. 

Khanna and Bretonnet6’ calculated S(Q) of liquid expanded rubidium by using the 
analytical form for the direct correlation function of the one-component plasma 
reference system and the random-phase approximation to consider the electronic 

and derived the expression of the long-wavelength limit S(0) of the 
structure factors. They were able to describe the experimental S ( 0 )  up to about 1800 K 
with their model by using the dielectric screening functions of Geldart and Vosko or 
Ichimaru and U t s ~ m i ~ ~ . ~ ~ .  

Recently, Naito and Yokoyama6’ applied a method that combines features of the 
mean-spherical approximation and the phonon for calculating the effective 
interaction potential from the observed low-angle structural data of liquid rubidium. 
Their effective pair potential can adequately explain the observed structure factors, 
which have been calculated in the Percus-Yevick approximation, for all momentum 
transfers up to 1900 K. However, at their highest temperature T = 1900 K, the 
interatomic potential becomes markedly different from the other calculations, particu- 
larly the core size shrinks drastically. The authors explain this effect in conjuncture 
with a metal-nonmetal transition. 
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In conclusion, it seems that the structure of expanded liquid rubidium can be 
explained reasonably well within the framework of a nearly-free electron potential at 
least up to densities of about 3 to 4 times the critical density. However, further 
theoretical work seems necessary which comments on the problems encountered with 
the deviation from the linear-screening theory and which takes into account the effects 
of short mean free paths. Further theoretical developments can now also be tested 
with the new structure data of expanded liquid cesium’. Especially the measured 
temperature- and pressure-derivatives of the structure factors, which exist now for a 
wide density region, will allow a crucial proof of the applied model. The density 
derivative of S ( Q )  will probably allow to extract more quantitative information on the 
triplet-correlation function. 
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